Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential.
نویسندگان
چکیده
N-methyl-D-aspartate receptors (NMDARs) are ion channels gated by glutamate, the major excitatory neurotransmitter in the mammalian central nervous system (CNS). They are widespread in the CNS and are involved in numerous physiological and pathological processes including synaptic plasticity, chronic pain and psychosis. Aberrant NMDAR activity also plays an important role in the neuronal loss associated with ischaemic insults and major degenerative disorders including Parkinson's and Alzheimer's disease. Agents that target and alter NMDAR function may, thus, have therapeutic benefit. Interestingly, NMDARs are endowed with multiple extracellular regulatory sites that recognize ions or small molecule ligands, some of which are likely to regulate receptor function in vivo. These allosteric sites, which differ from agonist-binding and channel-permeation sites, provide means to modulate, either positively or negatively, NMDAR activity. The present review focuses on allosteric modulation of NMDARs containing the NR2B subunit. Indeed, the NR2B subunit confers a particularly rich pharmacology with distinct recognition sites for exogenous and endogenous allosteric ligands. Moreover, NR2B-containing receptors, compared with other NMDAR subtypes, appear to contribute preferentially to pathological processes linked to overexcitation of glutamatergic pathways. The actions of extracellular H+, Mg2+, Zn2+, of polyamines and neurosteroids, and of the synthetic compounds ifenprodil and derivatives ('prodils') are presented. Particular emphasis is put upon the structural determinants and molecular mechanisms that underlie the effects exerted by these agents. A better understanding of how NR2B-containing NMDARs (and NMDARs in general) operate and how they can be modulated should help define new strategies to counteract the deleterious effects of dysregulated NMDAR activity.
منابع مشابه
The qEEG Signature of Selective NMDA NR2B Negative Allosteric Modulators; A Potential Translational Biomarker for Drug Development.
The antidepressant activity of the N-methyl-D-aspartate (NMDA) receptor channel blocker, ketamine, has led to the investigation of negative allosteric modulators (NAMs) selective for the NR2B receptor subtype. The clinical development of NR2B NAMs would benefit from a translational pharmacodynamic biomarker that demonstrates brain penetration and functional inhibition of NR2B receptors in precl...
متن کاملStructural Basis for Negative Allosteric Modulation of GluN2A-Containing NMDA Receptors
NMDA receptors mediate excitatory synaptic transmission and regulate synaptic plasticity in the central nervous system, but their dysregulation is also implicated in numerous brain disorders. Here, we describe GluN2A-selective negative allosteric modulators (NAMs) that inhibit NMDA receptors by stabilizing the apo state of the GluN1 ligand-binding domain (LBD), which is incapable of triggering ...
متن کاملExcitatory amino acid neurotransmission.
In recent years great progress has been made in understanding the function of ionotropic and metabotropic glutamate receptors; their pharmacology and potential therapeutic applications. It should be stressed that there are already N-methyl-D-aspartate (NMDA) antagonists in clinical use, such as memantine, which proves the feasibility of their therapeutic potential. It seems unlikely that compet...
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملChimeric Glutamate Receptor Subunits Reveal the Transmembrane Domain Is Sufficient for NMDA Receptor Pore Properties but Some Positive Allosteric Modulators Require Additional Domains.
UNLABELLED NMDA receptors are ligand-gated ion channels that underlie transmission at excitatory synapses and play an important role in regulating synaptic strength and stability. Functional NMDA receptors require two copies of the GluN1 subunit coassembled with GluN2 (and/or GluN3) subunits into a heteromeric tetramer. A diverse array of allosteric modulators can upregulate or downregulate NMD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 157 8 شماره
صفحات -
تاریخ انتشار 2009